
Project Report - Admirals

Oskar Gådin, Casper Norrbin, Joel Sikström, Jakob Wallén

January 12, 2024

1

Contents
1 Introduction 4

2 Goals of the engine 4

3 Related Work 6

4 The Game Engine 6
4.1 Design . 6
4.2 Interfaces and Classes . 7

4.2.1 Top-Level Interfaces . 7
4.2.2 Data Classes . 8
4.2.3 Static Classes . 9

4.3 Objects, Elements, and Containers . 9
4.3.1 User Interface Elements . 9
4.3.2 Game Objects . 10
4.3.3 Containers . 10

4.4 Event System . 10
4.4.1 Game Loop Events . 10
4.4.2 Subscription Events . 10
4.4.3 Deferred Actions . 11

4.5 Graphical User Interface . 11
4.5.1 User Interface Menus . 11
4.5.2 Hovering Effects . 12

4.6 Collision Detection using Quadtrees . 13
4.6.1 Quadtree Examples . 14

4.7 Pathfinding and Nav-meshes . 14
4.8 Networking . 15

5 Minimum Viable Product 15
5.1 Engine Interactions . 16
5.2 Managers . 16
5.3 Window Scaling . 17
5.4 Pathfinding . 18
5.5 Ship Combat . 18
5.6 Sprite Animations . 18
5.7 Networking . 19

6 Project Management 19
6.1 Version Control . 20
6.2 Continuous Integration . 20

7 Tools 21
7.1 Formatting . 21
7.2 Linting . 21

8 Results 22

2

8.1 Profiling . 22
8.2 Features . 23

9 Discussion 24
9.1 Performance . 24
9.2 Application Testing . 24
9.3 Division of Work . 25
9.4 Ease of Use . 26
9.5 Engine Dependencies . 26
9.6 Open Source Contribution . 26

10 Future Work 27
10.1 Usage Examples and Guides . 27
10.2 Performance . 27
10.3 Graphical User Interface . 27
10.4 Additional Features . 28

11 Lessons Learned 28

3

1 Introduction
Admirals is a game engine primarily targeted for developing 2D, real-time strategy (RTS),
multiplayer games in C++ for Linux and Windows. The work done towards developing the
engine is part of the course Software Engineering Project (1DL650), which has taken place
during period 2 of HT2023.

Although game engines as a concept are not something unique, many existing game engines
offer a full and comprehensive suite of functionality and possibilities for creating games that can
easily feel overwhelming. A consequence of this is that, as a developer, it can take significant
time to get used to creating games with the great number of tools at your disposal.

To make it easier for developers to create games, we aim to develop a game engine focusing on
select key features we find most valuable for 2D, real-time strategy (RTS), multiplayer games.
By focusing on a subset of features that are most relevant to these specific types of games, our
engine can be more portable and lightweight, making it easier to run and use compared to other
game engines. This makes using our engine worthwhile for developers seeking an easy-to-use,
small, and portable game engine to develop their game(s) in.

The main goal of this project is to develop a game engine to allow users to more easily create
games, which we demonstrate by designing a game that we imagine the engine should be able to
implement, also known as a Minimum Viable Product (MVP). We use the requirements of the
game to decide what functionality the game engine should implement in its exposed API to a
game developer. This process of working “backward” from the game to the game engine allows
us to only focus on parts of the engine that are required for us to create the MVP. Features
that are not needed for the MVP have for the most part been skipped. However, some features
that allow other features to be more easily implemented have been implemented for the sake of
code readability and ease of use.

The project is in equal parts authored by Oskar Gådin, Casper Norrbin, Joel Sikström, and
Jakob Wallén.

2 Goals of the engine
To reiterate, the goal of the engine is for it to be able to create 2D, real-time strategy (RTS),
multiplayer games in C++ for Linux and Windows. Although this goal includes several key
features, it does not highlight the direction in which to develop the game engine from the start.
To have a more concrete plan for developing the engine and envisioning what it should be able
to do, we created a concept image of a minimum viable product (MVP) game, as shown in
Figure 1. From this image, we have extracted both functional and non-functional requirements
for the engine that align with developing the illustrated MVP.

4

Figure 1: Initial design for the MVP.

The functional requirements extracted from the MVP concept image are as follows:

• The engine should be able to create and store game objects (objects inside a game).

• The engine should be able to create and store scenes, which hold an arbitrary number of
game objects.

• The engine should be able to swap which scene is active at any single time.

• The engine should be able to create different UI Elements, like text, buttons, and input
fields.

• The engine should be able to create and store DisplayLayouts, which store a collection of
UI Elements.

• The engine should be able to swap which DisplayLayout(s) are active at any single time.

• The engine should be able to render both textures and simple shapes.

• The engine should be able to receive mouse and keyboard inputs from the user and handle
them.

• The engine should provide a multiplayer framework that a user can build their implemen-
tation on.

The non-functional requirements are:

• The engine should be easy to use for someone experienced with the C++ language.

• The engine should be well documented with instructions on how to build and use it.

• Engine functions should be well-defined, with clear names and extra documentation when
needed.

• The engine should be well tested, with tests covering all major functionality.

5

3 Related Work
There exist many popular game engines that are widely used today. Unity [1] and Unreal
Engine [2] are two very popular engines that are fully fledged and used by large game studios
to create complex games of any type. They have many features and come bundled with an
interactive graphical user interface editor to make the games. When used fully, both Unity and
Unreal are powerful, but for most developers, many of the features they provide are not needed
and remain unused. For developers unfamiliar with their features, developing a game can be
a daunting experience. Instead, developers might want an easier alternative that allows them
to focus on developing their game rather than spending too much time figuring out available
features that they do not need.

One of these alternatives is Pygame [3], which is a Python library to help with creating simple
games. It contains functionality to do things like reading user input, drawing shapes and
rendering sprites, and playing sounds. It is simple to use, but only contains a limited set of
features and does not have an editor. A user includes Pygame in their project and uses the
available library functions in their code.

The complexity of Admirals is somewhere in between these ends. It has a thorough set of
features, more than Pygame, but does not have the whole suite of features that Unity or
Unreal Engine provide. Admirals does not have an editor and is used as a library similar to
Pygame.

4 The Game Engine
Developing a game engine is a balancing act between what should be provided by the engine
and what is left to the game developer using the engine. The purpose of the game engine is to
provide functionality for performing commonly done actions, creating and managing stateful
(UI) objects, and handling events, among other things. On the one hand, the engine should
be general enough for game developers to be able to create the game they want, without being
hindered by certain limitations inside the engine. However, adding too much functionality will
make the engine bloated and might decrease performance unnecessarily.

With the previous goals in mind, the following sections describe the functionality that we have
chosen to focus on in the game engine.

4.1 Design
As the development of the engine progressed, the structure and design were modified and
improved many times. The final structure can be found in Figure 2 which shows the modules
and their dependencies. The final structure shows all dependencies and relations except for the
EngineContext and DataClasses since their relations are too large to show coherently in the
graph. EngineContext and DataClasses are used by almost all other modules and would be
placed at the bottom of the dependency graph. EngineContext contains the context used by
the engine, and DataClasses contains generic data classes with supporting functions.

6

Figure 2: Final structure of the modules and dependencies of the Admirals source code. The
graph shows all dependencies and relations except for the EngineContext and DataClasses
classes since the relations involving them are too large to show.

As can be seen, there are many modules with many dependencies. At the bottom of the graph,
we find various events, interfaces, and data structures. These are then used by other modules
to implement something concrete, like a UI Element or a GameObject. These modules are then
used by even higher-level modules, like menus, and scenes. Finally, at the highest level is the
engine itself, which is what is exposed to the user.

The networking implementation is completely separate from the rest of the engine. This makes
it more generic, and in theory, would allow it to be used for other projects. With the networking
being separate, it is possible to use it without using the rest of the engine. This is useful if one
wants to create a dedicated server for a game. This server should not need to run the game,
and should instead only be concerned about its own function.

4.2 Interfaces and Classes
While interfaces do not exist in C++, we use the term to refer to (mostly) abstract classes that
are inherited by classes that implement or support some specific behavior. These classes have
a name starting with an uppercase I, like IDisplayable for example.

4.2.1 Top-Level Interfaces

The Engine makes use of a small set of top-level interfaces that guarantee some functionality
of objects contained in certain collections.

7

The IDisplayable interface defines methods to render a displayable and access methods related
to its bounding box. IDisplayable is inherited by the IInteractiveDisplayable interface
that is implemented by GameObjects and UI Elements.

The IOrdered interface defines methods to access an order (or depth) and a unique iden-
tifier. It is used in OrderedCollections, as discussed in section 4.3.3. It is inherited by
the IInteractiveDisplayable interface, which is implemented by both GameObjects and UI
Elements.

The IInteractiveDisplayable interface implements the IDisplayable and IOrdered inter-
faces as mentioned above, and also defines methods for handling engine loop events. It is
implemented/inherited by GameObjects and UI Elements. It is used in both QuadTrees, and
IDisplayLayers.

The IDisplayLayer interface defines methods for a type of collection that can propagate engine
events to its contained IInteractiveDisplayables (displayables) as well as methods to modify
what displayables it contains. It is implemented/inherited by Scene, and DisplayLayout and
used by the Renderer and Engine modules.

4.2.2 Data Classes

To simplify calculations for positions, directions, colors, and other commonly used data types,
we have created classes that can abstract some of these calculations.

The simplest example is the VectorN classes where N is the dimension of the vector, where
the engine currently supports vectors of dimensions N ∈ 2, 3, 4. The VectorN classes contain
N floating-point components and support arithmetic operations such as addition, subtraction,
multiplication, and division with floating-point values or other VectorN objects. The VectorN
classes also provide methods to obtain the vector magnitude and the distance to another vec-
tor/point.

The Color class represents a 4-dimensional RGBA color that extends the Vector4 class and
adds additional methods for converting colors from hexadecimal notation and 256-bit unsigned
integer components to floating point values between 0 and 1. Converting to a canonical repre-
sentation of floating point values between 0 and 1 is necessary since the Vulkan2D dependency
relies on that specific representation for its colors.

The Rect can be used to represent areas and consists of four floating point components, two
representing the width and height of the area, and two representing the 2D position of the area.
The main use of this class is to group these two components in a single object and to provide
methods to check if the area overlaps a point or another area (Rect).

The Texture class serves as a wrapper for texture objects from the Vulkan2D library. The
main use of this wrapper is to provide a static method for loading textures from a file path and
for unloading the texture when the object is deconstructed.

The NavMesh class is used to optimize navigation by reducing the need to calculate whether
or not a move would result in a collision with another object. This is achieved by storing this
information to enable re-use between multiple pathfinding calculations. It also allows further
customization of the cost of each path (weighting specific moves over others).

8

4.2.3 Static Classes

Many classes provide static methods, but in this section, we will discuss the classes that will
mainly be used statically by users of the engine.

The first such class is the Renderer class, commonly used in the Render method of classes that
implement the IDisplayable interface. The Renderer class provides static methods to draw
shapes, text, and textures on the screen. However, it is also used internally in the engine to
initialize the rendering frameworks.

Another such class is the Pathfinding class, this class’s only purpose is to find paths on a
provided NavMesh. It has three public methods, one to find the aforementioned paths, and two
to convert between different coordinate systems.

4.3 Objects, Elements, and Containers
The game engine has two main types of objects, user interface (UI) Elements and GameObjects,
along with their respective containers.

UI Elements along with the DisplayLayout container are responsible for traditional user inter-
face functionality such as displaying text and rendering clickable buttons, among other things.
GameObjects and the Scene container are generally responsible for user-defined objects that
can receive dynamic updates for each frame.

Both Elements and GameObjects are defined on the screen by their bounds stored as a Rect.
Elements are defined to always be rendered on the screen, but Game Objects do not always have
to be rendered. For example, one might define a Game Object that manages some functionality
in the background, without needing to be rendered in any way. In the MVP, this concept is
referred to as managers.

More detailed descriptions on Element, GameObject, DisplayLayout, and Scenes will be given
in the sections below.

4.3.1 User Interface Elements

The engine provides a minimal set of features to be able to create practically any UI environ-
ment. The basis of this starts with what we call UI Elements (or just Elements), which are
defined from the base class Element that define the functionality that all elements commonly
implement. We have decided to separate elements from game objects since elements generally
do not need some of the extra functionality that game objects have, such as performing updates
every frame. Elements are also easily arranged on the screen, which is an added benefit since UI
features are often placed in common locations, such as corners, or aligned in certain fashions.
The DisplayLayout container therefore overrides the absolute position of individual elements
to align them to specific locations defined by the user.

The implementation of specific elements is generally left to the user. However, the engine
provides some elements out of the box: TextElement for rendering text, Button for rendering
clickable buttons, and Input for text input. We feel that these specific implementations are
often used in many contexts and should therefore be available out of the box.

9

4.3.2 Game Objects

Game objects are the type of objects that populate game scenes, they are positioned using
absolute coordinates and have an update method that is called once each frame. This makes
the game object highly dynamic, capable of changing its state over time as opposed to only in
response to events. The implementation of game objects is entirely left to the user.

4.3.3 Containers

Containers are capable of holding a collection of displayables, such as UI Elements or GameObjects.
The reason containers exist is to allow the user to easily group, apply changes, and propagate
events. Each container implementation stores displayables in what is called an OrderedCollection.
The collection orders elements according to a depth-order value that is defined for each object by
the user. To solve the problem of what order objects should be rendered, the OrderedCollection
sorts the contained displayables from lowest order to highest depth-order value. This makes
rendering simple, as the objects are sorted in the same order as they should be rendered. The
reason for having different container implementations (such as DisplayLayout and Scene), is
because they handle engine event propagation differently and DisplayLayout overwrites the
position of its contained elements.

A container propagates engine events to all displayables in its collection. For example, to
facilitate handling mouse click events, all containers interested in mouse clicks use a quadtree
to find objects at a given click position, which is described in detail in section 4.6.

Apart from the previously mentioned containers, the engine also defines a third container: Menu,
which contains MenuOptions. A Menu is a more specific implementation of a DisplayLayout
intended for rendering menus in a very specific way. Menus will be described in more detail in
Section 4.5.1.

4.4 Event System
Two different types of events are defined and widely used inside the engine, Game Loop Events
and Subscription Events, which we will go into more detail about in the following sections.

4.4.1 Game Loop Events

The first type of event is implemented as a core part of the game loop and will be referred to
as “game loop events”. Game-loop events are propagated from the engine through the display
layers to the displayables they contain. These event methods receive a reference to the current
engine context as an argument, and propagation cannot be stopped from the event methods.
Since display layers can be toggled on/off, events are propagated only through the active layers.
An example of a game loop event is the OnUpdate event, which is propagated every frame to
allow game objects to dynamically change their state during the game loop. This event may
commonly make use of the delta-time value in the engine context.

4.4.2 Subscription Events

The second type of events will be referred to as “subscription events” and works by allowing
methods to dynamically subscribe and unsubscribe to an EventSystem object. The event system
stores references to subscribed methods (event handlers) so that when the event is invoked, the

10

event handlers can be called. This type of event passes around a reference to the object invoking
the event and an event argument object that can be modified by the event handlers. The event
argument contains a flag that can be set to prevent the event from propagating to other event
handlers.

An example of a subscription event is the UI button onClick event system class member. The
button also has an engine loop event OnClick. The engine loop event notifies the button that
it has been clicked on, the button can then invoke the subscription event to allow external
methods to handle the click on the button. This allows users to have a single button class
that can perform different actions depending on what event handlers are bound to the onClick
EventSystem.

4.4.3 Deferred Actions

During the implementation of the MVP, we encountered issues such as seemingly random
segfaults sometimes when changing active layers in the engine or unsubscribing event handlers
from other event handlers. The issue was related to how the user of the engine could alter certain
collections in the object while those collections were being iterated over as a part of handling
events. For example, when iterating over currently active layers, a layer that is currently active
could be made inactive, making the iterator behave in an undefined way. To fix this issue, we
introduced what we call deferred actions.

Deferred actions mean that instead of immediately acting when the user requests it, the action
is instead added to a list of actions that will be handled at a later time.

In the case of event handlers, the next time the event system is invoked, all deferred actions
are handled before iterating the event handler collection. In the example of a deferred remove
action, the actual unsubscription would occur the next time that event is invoked (before
iterating subscribed event handlers). Similarly, in the case of layers, all deferred actions are
handled only once in each frame. This allows the user to perform as many changes as they
want during the current frame, but the updates will only take effect in the next frame.

Utilizing deferred actions in this way not only solves the problem with segfaults but also makes
the engine behave more predictably, making its behavior less complex and easier to understand,
which aligns well with the goals we have for the engine.

4.5 Graphical User Interface
4.5.1 User Interface Menus

As previously described, the engine provides a minimal set of features to create any type of user
interface (UI) environment. The main building blocks for a UI are Text, Button, and Input
elements. In addition to this, the engine also defines a system for managing and creating menus
that can hold any number of the MenuOption element.

A menu is considered a container and works the same way as a Scene and DisplayLayout do.
The only difference is that a Menu is rendered in a specific way, with the possibility of being
altered by the user and having a title that is displayed above the menu. The specific way that
a menu is rendered by default is by aligning options to the middle of the screen.

11

The engine provides several pre-defined MenuOptions that we feel are most relevant for cre-
ating basic menus. The options provided are: TextOption, ClickOption, ToggleOption,
CycleOption and InputOption. These options can be extended or overridden by the user
to create even more specific options.

Figure 3 shows an example of what a menu with four MenuOptions and a title looks like.

Figure 3: Menu with four different MenuOptions and title “Admirals Conquest (MVP)”

4.5.2 Hovering Effects

We define hovering over UI Elements as the mouse position currently being inside the element’s
bounds. If multiple elements contain the mouse position, only the element on top with regards
to ordering is considered to be hovered on. It turns out that supporting hovering effects is
a non-trivial problem to solve, especially if the cursor has multiple ways of “unhovering” an
element. It took us many iterations of implementation to get to a version that feels natural
enough to be used in practice, which is what we’ll describe in this section.

We start by defining a set of events: OnMouseEnter, OnMouseLeave, OnMouseMove, which are
called when the mouse enters an element, leaves an element, and moves inside an element
respectively. These events are called with regard to differences between a list of elements that
were hovered on previously and another list of what elements are currently being hovered on.
For example, if an element was not previously hovered on, but is now, then the OnMouseEnter
event is invoked.

Using these three events makes it possible to trigger the right actions when the mouse moves
on the screen, which is handled by the display layout for elements. For example, when the

12

OnMouseEnter event is invoked for the button, the background changes to be more gray and
the cursor changes to a hand instead of an arrow, as shown in Figure 3.

Implementing hovering effects is in its simplest form straightforward to do if the only way the
mouse can enter and leave elements is by moving the mouse. However, this is not the case in
many graphical systems, and our engine is not an exception. The main thing that complicates
this is that the user can hide and show layers at their discretion. This means that elements that
are hovered on can suddenly vanish and elements can also appear out of nowhere. To support
this, the engine broadcasts an artificial mouse move event with the current mouse position to
elements that have just been displayed so that they can take the mouse position into account,
handling corresponding OnMouseEnter/OnMouseLeave/OnMouseMove accordingly.

Another thing that must be supported to have predictable transitions is handling OnMouseLeave
event(s) before OnMouseEnter events. If this is not done correctly, transitions and, in extension,
hovering effects may break. This caused us some tricky bugs because we previously handled
OnMouseLeave events last since it was slightly more efficient.

4.6 Collision Detection using Quadtrees
Figuring out which displayables are clicked on during a mouse click on the screen is a non-trivial
problem if you want a solution that scales with many objects and supports an environment where
the game resolution or window might change during run-time. 1

The engine implements a quadtree [4] that recursively divides the window into quadrants and
stores data on which quadrants contain what displayables. Building a quadtree is straight-
forward if the data that is stored inside it are points (i.e. 2D coordinates). However, since
displayables are defined from their bounds, which is a rectangle (origin, width, and height), the
quadtree needs to handle this in a well-defined manner. To do this, we have added support for
areas by deviating from a traditional quadtree implementation by adding the following rules
when building the quadtree:

• A displayable will be included in all quadrants within which it falls, which often results
in a displayable being in multiple quadrants.

• If a quadrant only contains one displayable, it will not be further divided (similar to
points).

• If all displayables that are to be included in a quadrant entirely overlap it, the quadrant
will not be further divided.

• Since overlapping displayables might end up in the quadtree dividing infinitely, there is a
limit on the minimum width of a quadrant (which correlates to a maximum depth inside
the tree).

The quadtree is searched using a mouse coordinate, i.e. a Vector2 (2D point). This always
allows us to find a single quadrant in which the mouse coordinate falls and return a reference to
the set of displayables that fall within it. Later on, the displayables placed inside the quadrant

1Initially, this problem had been solved by iterating over all displayables and checking if the mouse was within
the displayable’s bounds, and if it was, let the displayable handle the click from there. This is a naive solution
that does not scale particularly well when the total number of displayables increases, since all displayables have
to be iterated over to see if they contain the mouse’s coordinates.

13

will have to handle the mouse click from there. Ideally, the number of returned displayables will
be significantly lower than the number of total displayables for the quadtree to be useful.

4.6.1 Quadtree Examples

Figure 4 shows three examples of how the quadtree is divided into smaller quadrants depending
on where the displayables are located. Figure 4a only contains two quadrants, as the two
elements fit perfectly in the upper left and right quadrants, respectively. Figure 4b is divided
to a depth of two, once in the upper left quadrant and again in the upper left and upper
right quadrants. Figure 4c is a little more complex since the displayables are unaligned to
the quadrant borders, which is usually the case since developers will not, and should not have
to, account for quadtree borders. Since the displayables are unaligned in this unfortunate
configuration, the quadtree will divide itself until the minimum quadrant width is reached,
which in this case is 10 pixels.

(a) In opposite corners (b) Next to each other, aligned
to the quadrant

(c) Next to each other, unaligned
to the quadrant

Figure 4: Two (2) displayables in different configurations showing how the quadtree is divided.
Red lines indicate quadrant borders.

4.7 Pathfinding and Nav-meshes
To implement ship movement for the MVP we implemented the A* [5] pathfinding algorithm
and nav-mesh objects containing data related to the cost of movement. The A* algorithm uses
the nav-mesh to find a path to a given destination that minimizes the sum of the movement costs
along that path. A nav-mesh is a 2D grid representation of a part of the world where each cell
in that grid contains a value representing the cost of moving to that cell. The implementation
is not specific to our MVP implementation and can be reused for non-grid-based games.

To create a nav-mesh we added a method to build a nav-mesh from the quadtree present in a
scene and we made the cell sizes of the nav-mesh match the size of our game board grid. The
nav-mesh queries each cell area in the quadtree to check if there are any overlapping objects
and then uses a user-provided method to determine if that cell is navigable or not. The MVP
uses the same cost for each navigable cell on the game board.

14

4.8 Networking
A networking implementation for a game engine needs to be broad to not limit the user in what
they can create. Without making assumptions about the end game, the engine should support
it. There are, however, some assumptions that need to be made regarding architecture and
communication protocols.

We chose a client-server architecture, where a server is connected to all clients. This is the most
versatile solution, as it allows the use of both dedicated servers and individual clients acting as
a host.

Clients and the server communicate through messages defined by the user. These could be
anything, from chatting to player movement. The engine provides various overrideable functions
that the user can use for their implementation. These are:

1. OnClientConnect: Called for each client that connects to the server.

2. OnClientDisconnect: Called for each client that disconnects from the server.

3. OnMessage: Called for each message received to or from a client.

In addition, the server has functions to send messages to one or all clients, and the client has
functions to send messages to the server.

How these messages are handled on both the server and the clients is up to the user. The engine
only facilitates the message passing between these. The user simply overrides and extends the
available functions, which will then be called automagically when the correct conditions are
met.

Our implementation uses the ASIO C++ library [6], which is a cross-platform low-level net-
working library. It provides a consistent asynchronous I/O model, which allows us to handle
networking concurrently with the rest of the engine. This also makes the networking platform-
agnostic, allowing for example clients to be on a Windows machine, while the server is run on
a Linux system.

We have chosen to use TCP as the transport protocol. This ensures that all messages are
guaranteed to arrive but is slower than other alternatives like UDP. Since we are focusing on
RTS games, consistency is vital. It is more important that all data arrive at the cost of speed
than for most data to arrive some milliseconds faster. Desyncing clients would be a big issue,
so all clients need to see the same state.

5 Minimum Viable Product
To showcase the built engine, an MVP (Minimum Viable Product) of a game was developed
using it called “Admirals Conquest”. The game uses a grid-based layout with two players in
opposite corners who will purchase and manage ship units to attack the other player. The goal
is for the players to defeat the other player’s base of operation located on the opposite side of
the map.

15

Figure 5: The MVP game, Admirals Conquest, in progress between two players

5.1 Engine Interactions
The MVP interacts with the engine by using the classes defined in the engine. Most importantly,
it creates a Engine class instance which it initializes with data before calling its StartGameLoop
method. The engine instance is initialized by adding IDisplayLayers containing appropriate
displayables, to the engine. These initial displayables can then make changes to the engine and
IDisplayLayers during the game loop.

5.2 Managers
A common paradigm to use when designing games is to use various managers who each handle
a specific part of the game. In our game, we created the following:

Game manager: Handles the game logic and connects the other managers.

Network manager: Handles sending and receiving messages to and from the server.

Menu manager: Handles various menus and the actions performed on them.

Selection manager: Handles the selection of ships inside the game.

Animator: Handles the animations of the various displayed game objects.

This aids in the separation of concerns and allows the different managers to communicate using
only higher-level functions, without caring about implementation details. For example, once a
game has ended, the network manager receives the message, which then tells the game manager
that the game has ended, which tells the menu manager to display the end-of-game menu.

16

5.3 Window Scaling
One limitation of the engine is that the game itself needs to implement how it should scale to
the size of its window. For our MVP, we chose to render a 10x12 grid of cells (with the top
and bottom rows being used to give room for UI Elements, and the 10x10 grid in the middle
being used for the game board). As the window from which this board is viewed is re-scaled,
the 10x12 grid will scale to fit, keeping the same aspect ratio and centering the board in the
middle of the window as can be seen in Figure 6.

Figure 6: Window scaling of a wide screen in the MVP

Scaling the game board to fit the screen is a challenging issue to implement in the MVP. Engine
features like quadtrees require the objects to have a bounding box with the correct position
and size where they are rendered. However, the game itself is played on a 10x10 board, which
means that we have to convert between two coordinate systems.

Our solution overrides the public getter for the GameObject bounding box to apply the correct
conversion from the board coordinates each object stores as their position, to the world coor-
dinates used for the quadtrees. Each object then uses this conversion in its render methods
to draw the object where the quadtree believes the object is. To simplify this conversion for
the game objects in the MVP, this is abstracted away in an abstract GridObject base class
that the other visible game objects in the MVP inherit from. Meaning that the game objects
inheriting from GridObject inherit the conversion between the different coordinate systems.
Except then having to apply the opposite conversion when reading mouse positions or nav-path
coordinates, this almost entirely obscures the conversion in the MVP.

17

5.4 Pathfinding
When the player wants to move a ship on the game grid they have to select the ship they
want to move and the destination the ship shall travel to. How the ship moves is decided by a
pathfinding algorithm that was developed in the engine and it checks which cells are occupied
and which grid tile is a valid option to move to. The implementation of the pathfinding
algorithm is described in more detail in Section 4.7.

The system also allows the player to select multiple ships to move to a grid tile. As multiple
ships cannot be placed on the same tile the position of the ships is decided by which ship arrives
first with the other ships placing themselves around the selected tile.

When a ship is set to move to its destination, data related to the move is sent to the server
where its position is updated. The server performs secondary checks to see if the next grid tile
for the ship is free or occupied. If the check fails the ship is not moved and the client is updated
to stop the movement of the ship.

5.5 Ship Combat
For a ship to attack in the MVP, a targeting system is used. When a player wants to attack
an enemy ship they have to select one of their ships and select the ship they want to target
afterwards. The targeting system uses the same framework as the pathfinding and movement
system to find valid targets and disallows a ship to be targeted if no path is found. As it shares
the same framework it also allows the player to select multiple ships to target a ship. When a
ship has a target it will move until the target is in range before initializing an attack. If the
target moves away afterward the attacking ship will follow it to continue attacking.

When the ship units are attacking their action is handled on the server to keep both players
in sync. The attack takes into consideration the ship’s unique stats for damage dealt and the
delay between attacks. First, all attacks by the ships are considered, and later the server checks
if any ships are dead, in which case they are removed from the game.

To buy ships the player must accumulate enough gold. The gold is received passively from the
server where it sends out a small amount each second and actively when the player places idle
ships near “treasure islands”.

5.6 Sprite Animations
The sprite animation in the MVP is handled by the Animator manager and is used to display
an animation of game objects and background elements. The sprite animations are done by
having each object to be rendered having a stack of pointers to multiple sprites. The Animator
manager iterates over this list during runtime to switch between the frames of animation.

The sprites used to animate the objects in the MVP are fetched from the website OpenGameArt [7]
where users can upload sprite art that can be used for free given the license is followed and
credit is given to the artist.

The Sprites we have used are:

“Modified 32x32 Treasure chest” by Blarumyrran CC0: [8]

“Animated Water Tiles” by Sevarihk CC-BY 4.0: [9]

18

More sprite art has also been used that was created by Sevarihk and found on their website,
Aurora-Sprites. [10]

5.7 Networking
The game builds on top of the networking functionality provided by the engine to implement
various message types. Messages are sent by either a client or the game server and are handled
according to their type.

After connecting to a game server, clients are marked as “waiting”. A client needs to send a
“ready” message to be marked as ready. Once both players are ready, the server announces
that the game has started.

The server broadcasts the complete state of the game many times each second. This includes
the current gold of players, base health, and ship location, health, and current action. Since
the game is small and simple, all this data can fit neatly into one message. For more complex
games, this would not work and another way of communicating the current state would be
needed.

All actions happen on the server. It is authoritative, and clients can only send which actions
they want the ships to do. It is the server that decides if any action is valid and if it should
be performed. This makes the clients simpler, as they do not need to handle any game logic.
They simply show a visual representation of the current state and have the functionality to
send actions to the server.

If a player were to disconnect in the middle of a game, the server can pause the game and wait
for that player to reconnect. While a game is paused, all actions are ignored and the game state
is frozen. Once the player has connected, the game is resumed from the same point. After a
game has finished, the state is reset, and either the same or new players can start a new game
by readying up again.

6 Project Management
All members are previously familiar with variations of the Scrum agile framework of project
management and using Kanban-like tools (Trello, Jira, GitHub Projects, etc) and have used
them successfully in previous collaborative efforts. Due to both familiarity and our wanting
to spend as much time as possible creating a good piece of software, we have chosen to use a
variation of Scrum that we feel adapts well to our goals and does not require us to spend time
learning something new.

The Scrum variation that we have decided to follow consists of sprints that are one week long
and without any distinct phases. The reason we have chosen to group sprints into phases is
that we are working on many things in parallel and many phases would be overlapping, which
would defeat their purpose. Sprints start and end on Mondays with a short standup each day
that is generally about twenty minutes. This meeting has generally taken place at 13:15, except
for Wednesdays when we have also met with the teachers to discuss progress, where we have
instead had the standup in proximity to that meeting.

On Mondays when we have a sprint transition we have a purposefully longer meeting to reflect
on what we need to do for the upcoming sprint and fill out our Kanban board on GitHub

19

Projects with tasks that we want to accomplish this sprint. In our GitHub Projects board, we
have five (5) columns in which tasks are placed:

Backlog Tasks that are set to be completed, but not during the current sprint.

Sprint Backlog Tasks that are set to be completed during the current sprint.

In Progress Tasks that are currently being worked on.

In Review Tasks that are ready to be reviewed (most likely in the form of a pull request).

Completed All tasks that have been completed successfully.

The workflow has consisted of assigning yourself to a task that you want to work on from
the Sprint Backlog and moving it to In Progress. A single member should generally not work
on many things concurrently, so limiting how many cards a member is assigned to in the In
Progress column is something we have adhered to.

The reason we have chosen to use GitHub Projects instead of other tools such as Trello or Jira
is that it integrates well with also hosting our code and issue management on GitHub. The
automatic features with merging and linking issues to pull requests make the process of using
the board seamless and hence the choice of using it instead of Trello or Jira uncomplicated.

6.1 Version Control
We have used Git and GitHub for version control and hosted the code on a private GitHub
repository located at https://github.com/joelsiks/admirals.

The process of working with GitHub is adapted from experiences we have that have worked
great in the past. Each group member develops new features, fixes, and general additions to
the codebase in separate branches from the main branch. When the code they have produced
is ready to be reviewed, which should be done by at least one other member, they create a pull
request, which is merged after any potential feedback is fixed and it is considered ready to be
merged into the existing codebase.

Since our group is only four people we have often communicated verbally about problems
during meetings. With this said, we have tried our best to write down reflections and problems
in GitHub using issues or comments in pull requests. Our main reason for writing down issues
is that it is much easier to remember what someone has said or thinks about something that
way and because we can observe each other’s work more easily.

6.2 Continuous Integration
To maintain a high standard and quality of the code we produce we have created a continuous
integration (CI) workflow that performs certain checks before something is about to be merged
into the main branch. If any of the CI checks fail, the code cannot (and should not) be merged
before they are resolved.

The CI checks that we have are:

Code Formatting Check that the code is formatted according to our pre-defined style, which
makes the code look consistent and well-formatted. Makes the code easier to read and
understand, which facilitates maintainability and refactoring in the future.

20

https://github.com/joelsiks/admirals

Compilation Checks that each target defined in our CMake file compiles successfully. All
code that is on the main branch should work and therefore, compile.

Another check that we would have wanted to include in the CI, which could potentially be
added in the future, is to check that the linting does not produce any errors. Linting, which
we’ll talk more about later, is a topic that requires us to define a specific set of rules to consider,
which has been hard for us to agree upon.

7 Tools
In this section, we will describe what, why, and when we have applied certain tools to improve
the quality and consistency of our code in several ways. A common feature of the tools we have
used is that they all integrate well with the development environment we use, Visual Studio
Code, making their use and application seamless.

7.1 Formatting
As previously stated, making the code look consistent and well-formatted makes it easier to
both read and understand, which also facilitates its maintainability and refactoring potential
in the future. Having a well-defined way in which the code is formatted also removes any
discussion of what is right or wrong between members, given that we all have settled on an
agreed-upon style.

To format our code, we have used a tool called clang-format which performs formatting using
a set of rules. We have chosen to base our style on a predefined style and change only a few
aspects that we just like more. In the end, this boils down to personal preference and the style
we have chosen is what we think looks the best. Listing 1 shows the entire set of rules that we
use.
BasedOnStyle: LLVM
IndentWidth: 4
Indent "public/private" in classes by nothing (negative of IndentWidth)
AccessModifierOffset: -4
Must be 80 characters or less!
ColumnLimit: 80
use \n instead of \r\n
UseCRLF: false

Listing 1: The rules for formatting used by clang-format.

Many editors, specifically Visual Studio code, provide a feature for automatic formatting when
saving a file. This has resulted in us rarely having to format the code using terminal commands,
making applying formatting an uncomplicated endeavor.

7.2 Linting
Linting is a process in which the code is statically analyzed to find potential issues, errors, or
inconsistencies in the code. We have decided to use a linter for two reasons in our project:
first, to make sure that we follow certain naming conventions for class-member variables, and
second, to root out any potential issues or errors that are easily missed.

21

To perform linting we have used a tool called clang-tidy which performs linting with regards to
a set of existing rules from which we select a subset that we are most interested in checking.
The reason that a subset is selected is that clang-tidy provides a large number of rules for many
different purposes, many of which are not interesting for our codebase and should therefore not
be included. Finding what rules to use and what rules not to use has been hard since it requires
knowledge about what rules exist. To help us to create an initial subset of rules we have used
ChatGPT, where we provided information about our code and some hints of what qualities we
are most interested in. From the initial subset provided by ChatGPT, we have continuously
added and removed rules as we figured out which are interesting and not. However, this process
is still ongoing, which is the reason we have not decided to use this in our CI stack.

All in all, using linting through clang-tidy has increased the quality of our code and made it
more consistent in ways that only using a code formatter could not.

A feature of clang-tidy that we are particularly satisfied with and want to point out is its ability
to check that class-member variables are prefixed in a certain way. We use this to ensure that
private class-member variables are prefixed using “m_” so that they are easier to detect when
reading code. Listing 2 shows the clang-tidy rule that performs this check.
CheckOptions:

- { key: readability -identifier -naming.PrivateMemberPrefix , value: m_ }

Listing 2: Class-member variable prefix rule for clang-tidy.

In Visual Studio Code, linting is integrated well enough that problems are shown in a separate
tab for the currently open file, making it easy to detect and fix problems. An alternative would
be to run the linter in the terminal, open the file in which a problem is found, fix it, and re-run
the linter to check that it is resolved. In general, using clang-tidy with Visual Studio Code has
worked great, apart from it being slow in some cases, which could easily be resolved by closing
and re-opening the entire editor.

8 Results
In this section, we will include tables and graphs from profiling, discussing how much time
is spent on certain parts of the engine: rendering, event handling, and rebuilding quadtrees.
Additionally, we will also discuss what features the final version of the engine has in connection,
and what goals have been fulfilled.

8.1 Profiling
The engine has been profiled through the MVP, where a short game session has been played
between two players. The Callgrind tool, which is part of the Valgrind suite, has been used to
measure the number of executed instructions when running the. We have chosen to perform
profiling on Linux instead of Windows because Linux natively supports using Callgrind and
KCachegrind for interpreting the results, which Windows does not.

Additionally, we have chosen to not include profiling results for the initialization of the engine,
such as loading textures, creating a window in the operating system, and initializing Vulkan
functionality. The reason for this is that the initialization will be different on every machine the
engine is executed on and takes a variable amount of time depending on what else is running

22

on the system, the hardware configuration, and the amount of data being loaded. Instead, we
will include results from the engine’s game loop, which is relative to other parts being executed
and thus gives a relevant and interesting result to analyze and interpret.

Figure 7 shows a table containing the profiling results of the functions called inside the engine’s
game loop (referred to as Engine::StartGameLoop).

Figure 7: Profiling results of Engine::StartGameLoop showing the percentage of time taken,
number of instructions, number of calls, and function name.

Figure 8 shows a graph containing the most time-consuming calls inside the game loop and
what takes time inside the sub-calls of those calls.

Figure 8: Profiling results of Engine::StartGameLoop with sub-calls included. The addresses
starting with 0x0000 are shared-library translation calls and should be ignored.

8.2 Features
The final version of Admirals fulfills all the functional requirements defined in Section 2. It
is possible to create different game objects and UI Elements and to store these in scenes and
menus. The containers can be swapped at any time, allowing the user to control the flow of their

23

game. These are rendered by the engine according to the user’s specifications. Additionally,
the engine supports networking, allowing the user to send arbitrary messages to/from different
endpoints.

With all the requirements/features, it is possible to implement (almost) any arbitrary game in
the engine. We proved this by creating Admiral’s Conquest, a two-player online RTS game,
described fully in Section 5. This game uses all of the engine features in its implementation and
builds on top to add additional game-unique features. This shows that Admirals is a capable
engine, able to be used when creating games.

All of the non-functional requirements were also fulfilled but to various degrees. The engine
is well documented, with thorough instructions on how to build and include in projects. If
the user is comfortable with C++, the engine should be easy to use, but we have no way of
verifying this. Some functionality has dedicated tests, but others lack them. However, Admiral’s
Conquest tests all functionality and acts as a large integration test to verify that all modules
work together.

9 Discussion
In this section, we will discuss the results presented in the previous section as well as other
areas which are interesting to note.

9.1 Performance
We have spent significant time developing and fine-tuning the way that mouse-click events are
handled, which are handled using quadtrees in the final version of the engine. In the profiling
results, as shown in Figure 7, we can observe that about 94% of the time inside Scene::Update
is spent on destroying and rebuilding the quadtree so that it is always up to date with the
latest changes in positions of game objects. Interesting to note is that creating and deleting
shared pointers inside the quadtree (operator delete and operator new) takes up about 24% of
the time inside Scene::Update. Overall, the performance increase of using a quadtree instead
of a naive solution is still better but could use improvement.

Regarding Engine::PollAndHandleEvent, about 55% of the time is spent inside SDL’s
SDL_PollEvent, which we can’t improve on. The rest of the time is almost exclusively spent
on handling mouse-move events, which typically are called often since mouse-moves occur ex-
tremely often.

All things not listed in the profiling results in Figure 8 take up less than 2% of the time inside
the game loop and are therefore not as interesting to look at. What the results have shown
us, which we were already suspicious about, is the significant time spent on quadtrees. For
now, this performance hit is acceptable and does not impact the way that the MVP is played.
However, for the future, the quadtree should ideally take up less time, perhaps through the use
of caching and more infrequent updating of quadtrees.

9.2 Application Testing
Our project is a bit different as the main deliverable is the game engine itself. With this in
mind, it is through the MVP that has been developed that the engine is most easily tested.

24

The plan was to expose the MVP, and in turn, the engine, to be tested by someone without
knowledge about the inner workings of the engine. However, this has not been done because
the people responsible for this failed to respond in time. Instead, the tests performed were from
our internal perspective, with knowledge and insights into the application. With this, we can
draw some conclusions, but it is not as conclusive as external impartial testing can be.

During the development of the MVP, we continuously used and tested the engine’s features
and discovered bugs along the way. In our regular workflow, we would implement some system
in the MVP and then make changes to the engine to make that system possible or fix bugs
discovered along the way.

9.3 Division of Work
At the beginning of the project, we decided that everyone would put in as much work as they
were willing and able. This was necessary since some group members had not yet found a thesis
project to work on and needed additional time for such activities. Because of some of this, the
distribution of work is not as even as it otherwise could have been. Those of us who were able
to work hard in the beginning compensated for the lack of time of the other members of the
group. This being said, much of the work was completed during the beginning of the project,
as can be seen in Figure 9. After the initial weeks, we had to decrease the amount of work
to a more reasonable level, while also spending more time fixing bugs and finding issues with
existing code. This resulted in a steady decline in the amount of new code written following
the peak in week 45 (November 12 in the graphs).

(a) Code frequency

(b) Number of commits

Figure 9: GitHub insights data from the Admirals project.

25

Because of how we distributed work, some group members worked more than others. However,
we managed to stay ahead of the initial time-plan throughout the project. The amount of work
in a project such as this is substantial, and we were therefore unable to focus on some parts that
we were initially interested in, to enable us to complete the core game engine. One such part
was the multiplayer aspects which we initially thought we would dive much deeper into.

9.4 Ease of Use
One of our goals for the engine was for it to be easy to use by an experienced user in C++. We
have defined easy to use as the user should not need to add long or complicated sets of code
to accomplish anything. The user should only have to call a single command if they want to
add or remove something and not worry about the performance of the engine during runtime.
The user should neither have to know how the code of the engine is written nor have to look
up how certain functions or methods work in detail.

With the current version of the engine, it is possible to use it by including the engine in the main
file of the game and initializing it by creating a scene and adding game objects to that scene.
While the setup of the engine could be smoother with multiple parts of the engine needing to
be initialized it is easy to add game objects when it is initialized as it would only require adding
a couple of lines of code.

While the process of setting up and creating a game with the engine is easy the documentation
for users regarding potential help if they need it is lacking. This was mostly due to time
constraints and lack of foresight.

9.5 Engine Dependencies
The game engine has three dependencies: Vulkan2D [11], SDL2 [12], and ASIO [6].

Vulkan2D is an external library by Paolo Mazzon built upon Vulkan and SDL2 used to render
and display objects. Vulkan2D is built to require no prior knowledge of Vulkan and be easy to
use so it was a good option for our engine as we did not want to spend much time on developing
and working with rendering.

Simple DirectMedia Layer 2 (SDL2) is a cross-platform software development library that pro-
vides developers access to hardware components and manages video, audio, input devices, etc.
In our engine we don’t use it directly but through the library Vulkan2D. Without this, the
engine wouldn’t be able to listen after inputs from the user nor display the game itself.

ASIO is a cross-platform C++ library for networks and provides a consistent asynchronous
model for developers. ASIO is used in the engine to establish connections between different
users and set them as client and server. Without this dependency, it would not be possible to
have multiplayer as we envision.

9.6 Open Source Contribution
As part of developing the engine and using the Vulkan2D library by Paolo Mazzon, we had the
opportunity to contribute to it by fixing a bug. The bug was related to calculating the number
of images in the current Vulkan swapchain.

26

Fixing the bug allowed us to continue using the Vulkan2D dependency the way we wanted
to and contribute to the open-source community simultaneously. The pull request for the
fix/contribution can be found at: https://github.com/PaoloMazzon/Vulkan2D/pull/10.

10 Future Work
There are a multitude of different options to be considered for future work. What we feel are
the most relevant and likely to be worthwhile features will be discussed below. No future work
will be considered for the MVP as it is intended to only showcase what can be accomplished
using the engine.

10.1 Usage Examples and Guides
To make the engine easy to use, it is important to provide extensive documentation and ex-
amples of the various parts of the engine. Due to time constraints and a failure to include
this in our initial time plan, this has been left to be implemented in the future. Especially,
this includes documentation in the form of usage examples and descriptions of wide-spanning
features.

10.2 Performance
The performance of the engine can be improved in several ways, the first change to consider is
the parallelization of the engine game loop. This could drastically improve the performance of
larger numbers of objects. This was not implemented because the MVP did not require a large
number of objects, and the complexity of such a feature was too large for the available time for
the project.

Ideally, as mentioned in Section 9.1, quadtrees should be made more efficient, perhaps by
utilizing caching measures and figuring out ways in which rebuilding quadtrees can be done
more infrequently. This would shift available resources to the game developer to perform the
game logic instead of the engine being too “bulky”. Another, more complex way, in which to
increase performance is to make building the quadtree more efficient, perhaps through reducing
the number of memory allocations. In Figure 8, we can see that the vector allocator is called
almost 200 000 times during 66 rebuilds of the quadtree.

Another change to consider is to reduce the usage of shared pointers, and instead move to
manual memory handling. This change can improve performance by reducing unnecessary
reference counting.

10.3 Graphical User Interface
To make the engine more user-friendly, a graphical user interface similar to that of Unity or
Unreal Engine should be developed. This is a substantial task that could be a project all on
its own.

27

https://github.com/PaoloMazzon/Vulkan2D/pull/10

10.4 Additional Features
Many features could be added to the Engine, one feature we have considered is the option to
change the icon of the game window. This could be easily solved by adding additional depen-
dencies, but to keep the project lightweight, we made the choice not to add these dependencies
and instead leave it to be implemented in the Engine directly in the future.

11 Lessons Learned
When developing the engine each member focused mainly on the parts they felt were most
interesting, which meant that certain parts of the engine received more work than others. For
example, Joel was really in developing GUI functionality, so he spent a lot of time on that,
while Casper was intrigued by networking and spent most of his time around that. In the
end, this worked in our favor since the parts we were interested in ended up with high-quality
design and functionality. Additionally, since we did not have strictly set responsibilities, we had
reoccurring discussions on what needed to be worked on at sprint transitions, which worked
great for us.

Throughout the project, we have worked on things in parallel, which required us to continuously
create and review pull requests on GitHub to resolve conflicts and also to ensure code quality
and consistency. We feel that spending time on pull requests has worked to our advantage and
has been time well-spent for us.

Not using Visual Studio when doing a C++ project on Windows poses several problems. This
meant downloading Linux-based tools on Windows, performing profiling on Linux, and using a
Linux-based compiler instead of MSVC. If we were to start a similar project in the future that
is as Windows-orientated as this game engine was meant to be, we would consider to instead
use Visual Studio instead to make setup and development much easier.

Although this project was meant to be a culmination of our studies and for us to “show off” what
we have learned so far, this project turned out to be a great learning experience nonetheless.
Some of us were unfamiliar with C++ and our proficiency in it improved throughout the project,
learning new concepts along the way. We also learned how important a proper development
environment is to speed up development.

28

References
[1] Unity Technologies. (2023) Unity Documentation. Accessed 2023-12-14. [Online].

Available: https://docs.unity.com/

[2] Epic Games. (2023) Unreal Engine 5.3 Documentation. Accessed 2023-12-14. [Online].
Available: https://docs.unrealengine.com/5.3/en-US/

[3] Pygame Community. (2023) Pygame. Accessed 2023-12-14. [Online]. Available: https:
//www.pygame.org/docs/

[4] Wikipedia. QuadTree. Accessed 2023-12-07. [Online]. Available: https://en.wikipedia.org/
wiki/Quadtree

[5] Geeks for Geeks. A* Search Algorithm. Accessed 2024-01-08. [Online]. Available:
https://www.geeksforgeeks.org/a-search-algorithm/

[6] C. Kohlhoff. (2023) Asio C++ Library. Accessed 2023-12-07. [Online]. Available:
https://think-async.com/Asio/

[7] OpenGameArt. OpenGameArt. Accessed 2024-01-07. [Online]. Available: https:
//opengameart.org/

[8] Blarumyrran. Modified 32x32 Treasure chest. Accessed 2024-01-07. [Online]. Available:
https://opengameart.org/content/modified-32x32-treasure-chest

[9] Sevarihk. Animated Water Tiles. Accessed 2024-01-07. [Online]. Available: https:
//opengameart.org/content/animated-water-tiles-0

[10] Aurora, Sevarihk. Aurora-Sprites. Accessed 2024-01-07. [Online]. Available: https:
//aurora-sprites.wixsite.com/main

[11] PaoloMazzon. (2023) Vulkan2D. Accessed 2023-11-03. [Online]. Available: https:
//github.com/PaoloMazzon/Vulkan2D/tree/master

[12] SDL community. Simple DirectMedia Layer - Homepage. Accessed 2024-01-07. [Online].
Available: https://www.libsdl.org/

29

https://docs.unity.com/
https://docs.unrealengine.com/5.3/en-US/
https://www.pygame.org/docs/
https://www.pygame.org/docs/
https://en.wikipedia.org/wiki/Quadtree
https://en.wikipedia.org/wiki/Quadtree
https://www.geeksforgeeks.org/a-search-algorithm/
https://think-async.com/Asio/
https://opengameart.org/
https://opengameart.org/
https://opengameart.org/content/modified-32x32-treasure-chest
https://opengameart.org/content/animated-water-tiles-0
https://opengameart.org/content/animated-water-tiles-0
https://aurora-sprites.wixsite.com/main
https://aurora-sprites.wixsite.com/main
https://github.com/PaoloMazzon/Vulkan2D/tree/master
https://github.com/PaoloMazzon/Vulkan2D/tree/master
https://www.libsdl.org/

	Introduction
	Goals of the engine
	Related Work
	The Game Engine
	Design
	Interfaces and Classes
	Top-Level Interfaces
	Data Classes
	Static Classes

	Objects, Elements, and Containers
	User Interface Elements
	Game Objects
	Containers

	Event System
	Game Loop Events
	Subscription Events
	Deferred Actions

	Graphical User Interface
	User Interface Menus
	Hovering Effects

	Collision Detection using Quadtrees
	Quadtree Examples

	Pathfinding and Nav-meshes
	Networking

	Minimum Viable Product
	Engine Interactions
	Managers
	Window Scaling
	Pathfinding
	Ship Combat
	Sprite Animations
	Networking

	Project Management
	Version Control
	Continuous Integration

	Tools
	Formatting
	Linting

	Results
	Profiling
	Features

	Discussion
	Performance
	Application Testing
	Division of Work
	Ease of Use
	Engine Dependencies
	Open Source Contribution

	Future Work
	Usage Examples and Guides
	Performance
	Graphical User Interface
	Additional Features

	Lessons Learned

